The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family [published erratum appears in J Cell Biol 1993 Sep;122(5):following 1143]
نویسندگان
چکیده
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.
منابع مشابه
The pas8 Mutant of Pichia pastoris Exhibits the Peroxisomal Protein Import Deficiencies of Zellweger Syndrome Cells-The PAS8 Protein Binds to the COOH-Terminal Tripeptide Peroxisomal Targeting Signal, and Is a Member of the TPR Protein Family
We previously described the isolation of mutants of the yeast P~chia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targ...
متن کاملHuman peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders
Two peroxisomal targeting signals, PTS1 and PTS2, are involved in the import of proteins into the peroxisome matrix. Human patients with fatal generalized peroxisomal deficiency disorders fall into at least nine genetic complementation groups. Cells from many of these patients are deficient in the import of PTS1-containing proteins, but the causes of the protein-import defect in these patients ...
متن کاملHow proteins penetrate peroxisomes
Three decades after the unobtrusive debut of the peroxisome as a distinct subcellular organelle, biologists are paying attention to the special bag of tricks eukaryotic cells use to entice peroxisomal proteins from their site of synthesis in the cytosol to the peroxisome. In this minireview, we highlight some of the recent findings that have emerged, emphasize their significance, and contrast t...
متن کاملTransport of microinjected alcohol oxidase from Pichia pastoris into vesicles in mammalian cells: involvement of the peroxisomal targeting signal
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcoho...
متن کاملPeroxisomal Targeting, Import, and Assembly of Alcohol Oxidase in Pichia pastoris
Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 121 شماره
صفحات -
تاریخ انتشار 1993